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ON A GROUP PURSUIT PROBLEM* 

M. PITTSYK and A.A. CHIKRII 

The nonstationary case of a problem of pursuit by several controlled objects is ex- 
amined. Investigations of similar kind, having a direct influence on the obtaining 

of the present results, were carried out in /l-88/. Three schemes are suggested for 
obtaining sufficient conditions for completing the pursuit in finite time from 
prescribed initial positions. The schemes in Sects.1 and 3 are generalization and 

refinement of the corresponding results in /8/, while the scheme in Sect.2 is close 
in form to the one in /?/. 

Given a differential game 

Zi' = _/Ii (t) z, + gi (t, Ui, U), z, 6z E"t, Ui E Ui (t), V E v(t). t > to & 0 (0.1) 

where Eni is an ni-dimensional Euclidean space, Ai are ni th-order square matrices depend- 
ing continuously on t F [to, + oo), Ui(t)and V(t) are continuous many-valued mappings, CJi (t) c 
UiC E";, V(t)C V CEni for all i and t > t,, where Ui and V are compacta, the fur,;:tions 
gi(t, ui. U) are continuous in all the variables; here and below the index i takes the values 
1, 2, . . . . m. The terminal set M(t) consists of sets Mi*(t) each of which has the representa- 

tionhl,*(t) = M,” + Mi(t), where Mi" are linear subspaces of E”z, while Aft(t) are continuous 
convex-valued mappings such that Mi(t)ll Li for each fixed TV [to, i-w), where L, is the 
orthogonal complement to M,” in space En%. 

We examine the problem of the trajectory z(t) =(zr(t), . . . . z, (t)) of the nonautonomous 

system (0.1) meeting the set M(t) in finite time from the initial position (to, z'), z(&,) := zl. 

We say that game (0.1) can be completed in time Z'= T(i,, z”) from the initial position (to, z") 

if measurable functions ui(t) = u,(t,, ziO, v(t)), ui (t) ~1 II, (t), t E [t,Z'] exist such that the solution 

of the system of equations 

ziO = Ai (t) zi + gi (t, ui (t), u(t)), zi (to) = zi” 

belongs to the set Mi*(t) at the instant 1 = T for at least one value of i for any measurable 

functions us V(t). i E [t,. TI. Here ui(t) remembers v(s), t >s> t,. Three variants of the 

solution of the given problem are proposed below. 

1, Let ni be an orthogonal projection operator from E”i onto the subspace L,. F7e intro- 
duce the many-valued mappings 

Qi (t, TV U,, u) = niQ2i (t, Z) gi (z, ui, u)r ut E uf (T)3 ” E Ir (T) 

@i (t3 7) = flrj @)i (t7 T, ui G), u), t>~>to 

(,&(t, T) is the matrizant of the system Zi' = Ai (t) Zi /9/j 

Condition 1. The sets @'i (t, 'C) are not empty for all t > 7 > t,. 

prom Condition 1 and the assumptions on the parameters of game (0.1) it follows that the 

many-valued mappings Qi(t.t) are measurable in Z and that sections m:(t, 7) E@:(t, T), t >T > t,, 

measurable in x exist. We fix them and we set t 

Let ai be nonnegative real numbers. We denote 

max (ai : (~~62, (L T) gi (.t, Ui (T.), u) - ‘pi (k T) n 

ai (t, t, to, Zi? 0) = (ai (Mi (t) - 5i (t, to. 2:))) # @I,, 5i (t, to, Zi) ifZ Mi (t) 

(t-t,)-', 5i (tv tO7 zi) E Mi (t) 

1 

(1.1) 

h(L,t,,z)=_~ipmgxSai(I,T,I,,Zi,u(2))dr 
1. 
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where v (.) = (u (t): v (7) E V(r), r ~3 It,,, tl, u(t) are measurable) . Let T (to, z) = inf (t: h (t, t,, z) = 1). 

Theorem 1. Let Condition 1 be fulfilled and let function 'Pi (t9 r) E @i (TV r)v t > T .A to, 

measurable in T, exist such that T = r(t,, z")< +>o,where, in fact, the greatest lower bound 

is achieved. Then the differential game (0.1) can be completed in time T-t, from a pre- 

scribed initial position (to, z"). 

Proof. Let v(z)E V(T) be an arbitrary measurable function, t e [to, rl. We denote 

Let L (T, to, zi")z Mi(T). Then for T, t > T > t,,, such that h(T, t, t,, Zi’, v(e))> 0 we select the 

controls n,(z)= ui(r) and the functions Miami from the equations 

niQi (T, r)gi(T, Ui (Z), U(r)) - 'pi (TV r) = ai(T, r, t0, Zi"9 (1.2) 

U (T))(ni (T) - 5i (Tv tOv zi”)) 

From (1.1) it follows that ai(t, T, t,, zi, v) are functions measurable in t and lower semicontin- 

uous in v. Consequently, for any measurable function v(z),z>t,, the functions ai (t, T, to, Zir 

v(z)) are measurable in 7. From this and from Condition 1, on the strength of the Filippov- 

Castaing theorem /lo/, follows the solvability of equation system (1.2) in the class of meas- 

urable functions U*(T) and mi (z), z zz t,, taking values from sets U,(t) and Mi(T). If for 

some l* E It,, Tl we have k(T, t,, tn, z", v(.)) = 0, then in (1.2) we set ai(T, 5, 1,, z,O'. U(T)) = IJ 

for T E It,, 27 and we choose the controls u,(t) from the Eqs.(l.2) thus obtained. 

From the Filippov-Castaing theorem /lo/ and Condition 1 follows the possibilityof choos- 

ing functions U,(T) measurable on the interval [t,, 7'1. If &(r, t,. zi") E &Ii(T), then we set 

mi (T) = 5i (T, to, zi”) and we choose the controls IQ(T) from the equalities (1.2) obtained. The 

representation 

niZ(t)=ni62i(t,tO)z0+SniS2t(t,t)gi(t, ui(T)~v(t))dT7 t>T>to (1.3) 
1. 

follows from the Cauchy formula. Adding dnd subtracting the quantity 

[ Vi(T,T)dr 
f. 

from expression (1.3) with t = T and allowing for the law for choosing the controls (1.2)when 

Li (T, t,, q”) c Mi (T), we obtain 

JT~z(T)=L(T~~o~ 1 z.“) [ I- fai (T, T, to, Zi”, v (r)) dz] _t {ai (T, ‘c, to, zio. v W) mi (4 dr (1.4) 
1. t. 

However, since h(T, T, t,, z’,V(*)) = 0, a number i = j exists such that the difference withinthe 
brackets in (1.4) vanishes. Then 

njz (T) = mj E Mj (T) 

When Ci (T, t,, zi”)EMi(T) this same fact follows from /ll/. Theorem 1 has been proved. 

Corollary 1. Let gi (z, pi, V) = Bi(T)ui -D~(T)u, where Bi(~), Di(z) are matrices of 
appropriate dimensions, and let the matrices siS2i (T,7)Bi(z) be nondegenerated for all r ~[t,, 
T]. Then the pursuers' controls are 

Ui (T) = [nfQi(?', r) Bi (r)I-'[niQi (T, t)Di(~) V(T) t 

vi (T, T) + ai (T, 7, to, zi’t v b)) (mi (z) - 5i (T, to, zi”))l 

mi (T) EYE Mi (T) 

Here ai (T, 7, t,. Zi’, u (?)) = 0 for t E It,, T], where h (T, t,, to, z”, v (.)) = 0. As we see from the 
analytic notation for 
plicit form. 

Ui(T) it is important to find the functions ai (T. t, t,, z,O, V(T)) in ex- 

Lemma 1. Let the mappings gi(Z, Vi(r), V) b 
@i (t, r), t > T > to. 

e convex-valued for 
Then 

7 > to, V f!Z V (5). 'Pi (t$ 't) E 
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Proof. Condition 1 is equivalent to the following inclusion: 

0 E (x&i (t7 7) gi (T7 Ui (T)s 0) - R (f, T)) Vu E V(T). f > T > to 
In terms of support functions it is equivalent to the inequality 

C, tt. T* OYP) $-(p. Cpi (t* r)) >O, VP E Li (1.6) 

The nonemptiness of the intersection in (1.1) is equivalent to the inequality (Theorem 1 of 
/3/) 

Ci (t7 TV 01 JJ) $- (P> Cpi (6 4) 2aixi (19 to7 lisp)* VJi E Li 
By virtue of (1.6), when xltt.fo,zisp)<O the latter inequality is fulfilled for any nonnegative 

ai- If, however, xi (I. lo. zi, p) >o* then, having set +(t, to, zi, p) = i, we obtain Ci(f,r, v,p) + 
(P, ‘pi (& T)) >cri for all p E Li, such that xi (t, to* Ziv P) = i . Hence follows formula (1.5). 

2. Let US consider certain sections mi(t) of the many-valued mappings Mi(f), t> t,, and 
let us fix them. We denote 

1 

Let 

mar (Bi>O : (G4 (h z) Bi (t, Ui(7), u) --‘pi (t. T)} n 
01 (t, -7, to, zi, u) = (-Pitli(t~tO~zi))fO~~ ‘li(t,h7zi)#0 

(t - to)-‘, ‘li (t> tOT Zi) =O 
We introduce the function 

and let 8 (to, z) = inf {t: p (t, t,, z) = 1). 

Theorem 2. Suppose Condition 1 has been fulfilled and there exist '5 -measurable func- 

tions mi (t, r) E Q,i(t, T), t > 'c > to, and measurable sections mi(t) of the many-valued mappings 

Mi(t), t > t,, such that 8 = @(t,, 2') < +m, and, further, let the greatest lower bound be 

achieved. Then differential game (0.1) can be completed in time 8 -to from a prescribed in- 

itial position (to, Zg. 

Proof. Let v (7) E V(z), z 6% [to, 81, be an arbitrary measurable function. We denote 

k(O,t. to,z”, u(.))=l - m:xff3i(@,r. to, zp,v(~))dt 

For r, t > r > to7 such that k(k3,t,t,,z”, u(.))>O”we select the controls ui (7) E U, (r) from 

the equations 

n&i (0, 4 gi (z, J4 (47 v (4) --'pi (0, r) = -4% (t. r, t,, Go, v(z)) qi (e, &I, Zi") 

if 'li (e, t,, q")#O or, otherwise, from the equations 

~4, (e, 4 gi (7 ui (4, v (4) - ‘pi (6 4 = 0 
Condition 1 and the Filippov-Castaing theorem /lo/ ensure the possibility of such aselection 

in the class of measurable functions. Arguments analogous to the proof of Theorem 1 permit 

us to conclude that for some i 

7tiz(e) = mf (e) E hfi (e) 

Corollary 2. Let gi(-c, ui, v) = Bi(r)~i- Di(z)v and let the matrices niQi (6 z) Bi (4 
be nondegenerated for all tE(t,, e]. Then 

pi (T) = [YC@~ (e, Z) Bi (r)l-'[niQi (@, 't)Df (r) v (4 + 

Cpi (8, 4 - Pi (e, z, to, zioI v (4) Qi (e, to, ~91, r E It,, 81 
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Here Bc (9, Z, t,, r;", Y(Z)) = 0 for TE [t,, 81, where k (8, t,, t,, z", vf.)) = 0. 

Lemma 2. Let the mappings gi(z, U,(r), u) be convex-valued for T > t,, UE V(T); qi(t, zn: 

@i 0, 4, t > 7 > to * be some r-measurable sections of the many-valued mappings @[(f,t), 
mi(t)=Mi (T) be some measurable sections of the many-valued mappings Mi(t). Then 

The proof is analogous to that of Lemma 1. 

3. Let wi(t, T), i >T> t, be some ~-measurable numerical functions. We form the fol- 

lowing mappings: 

Condition 2. The sets Fi(t, ?) are ,nonempty for all t >r > t,. If Condition 2 is ful- 
filled, then the many-valued mappings Fi(t, Z) are measurable in T and t-measurable functions 

!i(t,+ E Fi(t,%) c Li exist for all t > r> t,. we fix them and we set 

Si(t,tO,li)=ilini(t,t,)Zl+Sf~(t,r)dz 

I0 

(each fi (t. to, zi) E k). We consider the functions 

max CYr > 0 : {Fi (t, 7, Ug ($0) - fi (t. 7)) n 

Yi (t, 7, tot Zi* V) = (- Ylb (t? tO* %)I f 0,. gi (t* tO* zi) # O 
(t - to)-‘, Ei 0, to, Zi) = 0 

vft, t0, 2) =min max s yi (t, z, to,.zi,v(‘6))ds 
v(.) i I* 

Let T (to, 2) = inf {t: v (t, t,, 2) = 1) 

Theorem 3. 
lo. 

Let the following assumptions be fulfilled: 
There exist t-measurable nonnegative functions oi,(t, ~),t > T > t,,exist such that 

Condition 2 is fulfilled. 
2O. There exist z-measurable functions fi(t,r) ~F+(t,t),t >3rt > t,, such that ?' = T(t,. 

z") < -!-a, and the greatest lower bound is achieved. 
3O. The equality 

is fulfilled. 
Then differential game (0.1) can be completed in time T-t,, from the prescribedinitial 

position (to, z"). 

Proof. Let V(T) E V(t). z ~5 ito, TI , be an arbitrary measurable function. We consider 
the function 

a(T,t,tO,Z",u(.)l=* -myi yi(T,t,h, Zi"g v (T))~T 
i. 

For t. t > z > t,, such that (r (T, t. t,, 2, v(.)) >0 we select the controls ui(~)= U,(t) and the 
functions mi'(t)EMi(t) from the equations 

%Qi tT, t) g, (-t, Ui (t), U(T)) - fi (T, 2) - ai (T, 7) mi (7) = -_Yj (T, 7, t,j, Sj”, V(T)) Ei (T, to, Zi") 

if &(T, t,. q")# 0 or, otherwise, from the equations 

%Qi (T. 7) gi (7, % (%I. L’ (7)) - fg (T, 7.) - Di (T, 7) mi (t) = 0 
Condition 2 and the Filippov- Castaing theorem /lo/ ensure the possibility of such a selec- 
tion in the class of measurable functions. Using the prOOf plan of Theorem 1, we get that 
niZ(T) E M<(T) for some i, which proves the theorem. 



Notes. lo. We can take (t - t,)+ as 03 (t, r). Then condition 2oin the theorem is auto- 
matically fulfilled. 

z". If Mi (t) = {O), t 2 t,, then Theorems 1, 2 and 3 coincide. 

Corollary 3. Let gi (r, ui, u) = Bi (z)z+ - oi(r; U, where By, Di(t) are matrices of ap-- 
propriate dimensions and the matrices x,Q,(r,z)B+(z) are nondegenerated for all T E I&, Tt. 
Then 

ui (7) = [n,Q, (T. r) Ri (r)I-'ln!Ri (T, t) Di (T) V(T) + 

fi (Tx T, + Oi (T, z, mi (T) - Vi (T, t, to, Z~‘I 11 (4) Ei (T, to, Zi”)l 

Here vi {?'. r. t,, 2%". v(s)) = 0 for T E It,. r1, where o(T, t,, t,, z". vi*)) = 0. 

Lemma 3. Let the mappings g{(z, U,(X), u) be convex-valued, t > t,: v f IJ (7). Then the 
formula 

occurs. 
The proof is by the proof plan of ~etmna 1. 

Note. Form=iand I;(~,t,.z')ez~(T) the timeT=T(t,, z”) for ending game (0.1) coincides 
with the time yielded by the procedure of Pontriagin's first direct method /ll/ in the *on- 
stationary case. For m = i and t)(B.to,z")=O the time 8= 9(t,,,#) for ending game (0.1) as well 
coincides with the time determined by Pontriagin's first direct method /ll/. 

Example. A conflict-controlled system has the form 

2;' = -a:(t) si -t_ ui -I_?, zi (t,) = St3 

Here zi E E’, s >, 1, ai rt). t ;2, to , are continuous nonnegative functions and 11 ui/l< bi it), (I v 11 C- E It), bi it), 
c lt) are, for t>to , continuous numerical functions such that hi(t)-e(t)>,O, t>tt,. while iw," : 
zi = 0, ML(~) = {O!, t >te The matrizant is 

It is seen that condition lo 1s automatically fulfilled. As q~i(t,t) we take zero. After com- 
putations we obtain 

a1 (r% 1.t,, z*=, z) = iii ii* /I (1, (~7 4)1-z~ [(v. zi=) + ((0. zi”)” + /ItiaN (bit(r) - jj uf))“‘] 

The pursuers' controls are 
ui (t) = U(T)- ai (Z,,f,. ZiO." (t)) Ri (7. to) Z&O 

The game ending time T= T(t,. z’! is finite, for example, if 
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