ON A GROUP PURSUIT PROBLEM*

M. PITTSYK and A.A. CHIKRII

The nonstationary case of a problem of pursuit by several controlled objects is examined. Investigations of similar kind, having a direct influence on the obtaining of the present results, were carried out in $/ 1-8 /$. Three schemes are suggested for obtaining sufficient conditions for completing the pursuit in finite time from prescribed initial positions. The schemes in sects.l and 3 are generalization and refinement of the corresponding results in $/ 8 /$, while the scheme in Sect. 2 is close in form to the one in /7/.

Given a differential game

$$
\begin{equation*}
z_{i}^{\cdot}=A_{i}(t) z_{i}+g_{i}\left(t, u_{i}, v\right), \quad z_{i} \in E^{n_{2}}, \quad u_{i} \in U_{i}(t), \quad v \in V(t), \quad t \geqslant t_{0} \geqslant 0 \tag{0,1}
\end{equation*}
$$

where $E^{n_{i}}$ is an n_{i}-dimensional Funlidean space, $A_{i}(t)$ are n_{i} th-order square matrices depending continuously on $t \Subset\left[t_{0},+\infty\right), U_{i}(t)$ and $V(t)$ are continuous many-valued mappings, $\quad U_{i}(t)$ a $U_{i} \subset E^{n_{i}}, V(t) \subset V \subset E^{n_{i}}$ for all i and $t \geqslant t_{0}$, where U_{i} and V are compacta, the furi:tions $g_{i}\left(t, u_{i}, v\right)$ are continuous in all the variables; here and below the index i takes the values $1,2, \ldots, m$. The terminal set $M(t)$ consists of sets $M_{i}^{*}(t)$ each of which has the representation $M_{i}^{*}(t)=M_{i}^{\circ}+M_{i}(t)$, where M_{i}° are linear subspaces of $E^{n_{i}}$, while $M_{i}(t)$ are continuous convex-valued mappings such that $M_{i}(t) \in L_{i}$ for each fixed $t \in\left[t_{0}, 1 \cdot \infty\right)$, where L_{i} is the orthogonal complement to M_{i}° in space $E^{n_{2}}$.

We examine the problem of the trajectory $z(t)=\left(z_{1}(t), \ldots, z_{m}(t)\right)$ of the nonautonomous system (O.l) meeting the set $M(t)$ in finile time from the initial position $\left(t_{0}, z^{\circ}\right), z\left(t_{0}\right)=z^{2}$. We say that game (0.1) can be completed in time $T=T\left(t_{0}, z^{0}\right)$ from the initial position (t_{0}, $\left.z^{\circ}\right)$ if measurable functions $u_{i}(t)=u_{i}\left(t_{0}, z_{i}{ }^{\circ}, v(t)\right), u_{i}(t) E U_{i}(t), t \in\left[t_{0} T\right]$ exist such that the solution of the system of equations

$$
z_{i}^{\circ}=A_{i}(t) z_{i}+g_{i}\left(t, \quad u_{i}(t), \quad v(t)\right), \quad z_{i}\left(t_{0}\right)=z_{i}^{\circ}
$$

belongs to the set $M_{i}^{*}(t)$ at the instant $t=T$ for at least one value of i for any measurable functions $v(t) \models V(t), i \doteq\left[t_{0} . T\right]$. Here $u_{i}(t)$ remembers $v(s), t \geqslant s \geqslant t_{0}$. Three variants of the solution of the given problem are proposed below.

1. Let π_{i} be an orthogonal projection operator from $E^{n_{i}}$ onto the subspace L_{i}. We introduce the many-valued mappings

$$
\begin{aligned}
\Phi_{i}\left(t, \tau, u_{i}, v\right) & =\pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, u_{i}, v\right), u_{i} \in U_{i}(\tau), \quad v \in V(\tau) \\
\Phi_{i}(t, \tau) & =\bigcap_{v \in V(\tau)} \Phi_{i}\left(t, \tau, U_{i}(\tau), v\right), \quad t \geqslant \tau \geqslant t_{0}
\end{aligned}
$$

$\left(\Omega_{\mathbf{i}}(t, \tau)\right.$ is the matrizant of the system $z_{i}^{*}=A_{i}(t) z_{i} / 9 /$)
Condition 1 . The sets $\Phi_{i}(t, \tau)$ are not empty for all $t \geqslant \tau \geqslant t_{0}$.
From Condition 1 and the assumptions on the paraneters of game (O.l) it folluws that the many-valued mappings $\Phi_{i}(t, \tau)$ are measurable in τ and that sections $\varphi_{i}(t, \tau) \leftleftarrows \Phi_{i}(t, \tau), t \geqslant \tau \geqslant t_{0}$, measurable in τ exist. We fix them and we set

$$
\xi_{i}\left(t, t_{0}, z_{i}\right)=\pi_{i} \Omega_{i}\left(t, t_{0}\right) z_{i}+\int_{i_{0}}^{t} \varphi_{i}(t, \tau) d \tau
$$

Let α_{i} be nonnegative real numbers. We denote

$$
\begin{gather*}
\alpha_{i}\left(t, \tau, t_{0}, z_{i}, v\right)= \begin{cases}\max \left\{\alpha_{i}:\left(\pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, U_{i}(\tau), v\right)-\varphi_{i}(t, \tau\} \cap\right.\right. \\
\left.\left(\alpha_{i}\left(M_{i}(t)-\zeta_{i}\left(t, t_{0}, z_{i}\right)\right)\right\} \neq \varnothing\right\}, & \zeta_{i}\left(t, t_{0}, z_{i}\right) \equiv M_{i}(t) \\
\left(t-t_{0}\right)^{-1}, & \zeta_{i}\left(t, t_{0}, z_{i}\right) \models M_{i}(t)\end{cases} \tag{1.1}\\
\lambda\left(t, t_{0}, z\right)=\min _{\tau \cdot \cdot} \max _{i} \int_{i_{0}}^{i} \alpha_{i}\left(t, \tau, t_{0}, z_{i}, v(\tau)\right) d \tau
\end{gather*}
$$

[^0]where $v(\cdot)=\left\{v(\tau): v(\tau) \in V(\tau), \tau \in\left[t_{0}, t\right], v(\tau)\right.$ are measurable $\}$. Let $T\left(t_{0}, z\right)=\inf \left\{t: \lambda\left(t, t_{0}, z\right)=1\right\}$.
Theorem 1. Let condition 1 be fulfilled and let function $\varphi_{i}(t, \tau) \in \Phi_{i}(t, \tau), t \geqslant \tau \geqslant t_{0}$, measurable in τ, exist such that $T=T\left(t_{0}, z^{\circ}\right)<+\infty$, where, in fact, the greatest lower bound is achieved. Then the differential game (0.1) can be completed in time $T-t_{0}$ from a prescribed initial position (t_{0}, z°).

Proof. Let $v(\tau) \in V(\tau)$ be an arbitrary measurable function, $\tau \in\left[t_{0}, T\right]$. We denote

$$
h\left(T, t, t_{0}, z^{\circ}, v(\cdot)\right)=1-\max _{i} \int_{i_{0}}^{t} \alpha_{i}\left(T, \tau, t_{0}, \quad z_{i}^{\circ}, v(\tau)\right) d \tau
$$

Let $\zeta_{i}\left(T, t_{0}, z_{i}\right) \underset{{ }^{\circ}}{\rightleftarrows} M_{i}(T)$. Then for $\tau, t \geqslant \tau \geqslant t_{0}$, such that $h\left(T, t, t_{0}, z_{i}{ }^{0}, v(\cdot)\right)>0$ we select the controls $u_{i}(\tau) \models U_{i}(\tau)$ and the functions $m_{i}(\tau) \in M_{i}(T)$ from the equations

$$
\begin{align*}
& \pi_{i} \Omega_{i}(T, \tau) g_{i}\left(\tau, u_{i}(\tau), v(\tau)\right)-\varphi_{i}(T, \tau)=\alpha_{i}\left(T, \tau, t_{0}, z_{i}{ }^{\circ},\right. \tag{1.2}\\
& v(\tau))\left(m_{i}(\tau)-\zeta_{i}\left(T, t_{0}, z_{i}^{\circ}\right)\right)
\end{align*}
$$

From (1.1) it follows that $\alpha_{i}\left(t, \tau, t_{0}, z_{i}, v\right)$ are functions measurable in τ and lower semicontinuous in v. Consequently, for any measurable function $v(\tau), \tau \geqslant t_{0}$, the functions $\alpha_{i}\left(t, \tau, t_{0}, z_{i}\right.$, $v(\tau)$) are measurable in τ. From this and from Condition 1 , on the strength of the FilippovCastaing theorem /10/, follows the solvability of equation system (1.2) in the class of measurable functions $u_{i}(\tau)$ and $m_{i}(\tau), \tau \geqslant t_{0}$, taking values from sets $U_{i}(\tau)$ and $M_{i}(T)$. If for some $l_{*} \in\left[t_{0}, T\right]$ we have $h\left(T, t_{*}, t_{0}, z^{0}, v(\cdot)\right)=0$, then in (1.2) we set $x_{i}\left(T, \tau, t_{0}, z_{1}{ }^{0}, v(\tau)\right)=0$ for $\tau \in\left\{t_{*}, T\right\}$ and we choose the controls $u_{i}(\tau)$ from the Eqs. (1.2) thus obtained.

From the Filippov-Castaing theorem /IO/ and Condition 1 follows the possibility of choosing functions $u_{i}(\tau)$ measurable on the interval $\left[t_{*}, T\right]$. If $\zeta_{i}\left(T, t_{0}, z_{i}{ }^{\circ}\right) \in M_{i}(T)$, then we set $m_{i}(\tau)=\zeta_{i}\left(T, t_{0}, z_{i}\right)$ and we choose the controls $u_{i}(\tau)$ from the equalities (1.2) obtained. The representation

$$
\begin{equation*}
\pi_{i} z(t)=\pi_{i} \Omega_{i}\left(t, t_{0}\right) z^{o}+\int_{i_{0}}^{t} \pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, \quad u_{i}(\tau), v(\tau)\right) d \tau, t \geqslant \tau \geqslant t_{0} \tag{1.3}
\end{equation*}
$$

follows from the Cauchy formula. Adding and subtracting the quantity

$$
\int_{i_{t}}^{T} \varphi_{i}(T, \tau) d \tau
$$

from expression (1.3) with $t=T$ and allowing for the law for choosing the controls (1.2) when $\zeta_{i}\left(T, t_{0}, z_{i}{ }^{\circ}\right) \equiv M_{i}(T)$, we obtain

$$
\begin{equation*}
\pi_{i} z(T)=\zeta_{i}\left(T, t_{0}, z_{i}^{\circ}\right)\left[1-\int_{t_{0}}^{T} \alpha_{i}\left(T, \tau, t_{0}, z_{i}^{\circ}, \quad v(\tau)\right) d \tau\right]+\int_{t_{0}}^{T} \alpha_{i}\left(T, \tau, t_{0}, z_{i}{ }^{\circ}, \quad v(\tau)\right) m_{i}(\tau) d \tau \tag{1.4}
\end{equation*}
$$

However, since $h\left(T, T, t_{0}, 2^{\circ}, v(\cdot)\right)=0$, a number $i=j$ exists such that the difference within the brackets in (1.4) vanishes. Then

$$
\pi_{j} z(T)=m_{j} \in M_{j}(T)
$$

When $\zeta_{i}\left(T, t_{\mathrm{n}}, z_{\mathrm{i}}^{0}\right) \in M_{i}(T)$ this same fact follows from $/ 11 /$. Theorem 1 has been proved.
Corollary 1. Let $g_{i}\left(\tau, u_{i}, v\right)=B_{i}(\tau) u_{i}-D_{i}(\tau) v$, where $B_{i}(\tau), D_{i}(\tau)$ are matrices of appropriate dimensions, and let the matrices $\pi_{i} \Omega_{i}(T, \tau) B_{i}(\tau)$ be nondegenerated for all $\tau \in\left[t_{0}\right.$, T. Then the pursuers' controls are

$$
\begin{aligned}
& u_{i}(\tau)=\left[\pi_{i} \Omega_{i}(T, \tau) B_{i}(\tau)\right]^{-1}\left[\pi_{i} \Omega_{i}(T, \tau) D_{i}(\tau) v(\tau)+\right. \\
& \left.\varphi_{i}(T, \tau)+\alpha_{i}\left(T, \tau, t_{0}, \quad z_{i}^{\circ}, v(\tau)\right)\left(m_{i}(\tau)-\zeta_{i}\left(T, t_{0}, z_{i}\right)\right)\right] \\
& m_{i}(\tau) \in M_{i}(T)
\end{aligned}
$$

Here $\alpha_{i}\left(T, \tau, t_{0}, z_{i}, v(\tau)\right)=0$ for $\tau \in\left(t_{*}, T\right]$, where $h\left(T, t_{*}, t_{0}, z^{0}, v(\cdot)\right)=0$. As we see from the analytic notation for $u_{i}(\tau)$ it is important to find the functions $\alpha_{i}\left(T, \tau, t_{0}, z_{i}^{\circ}, v(\tau)\right)$ in explicit form.

Lemma 1 . Let the mappings $g_{i}\left(\tau, U_{i}(\tau), v\right)$ be convex-valued for $\tau \geqslant t_{0}, v \in V(\tau), \varphi_{i}(t, \tau) \in$ $\Phi_{i}(t, \tau), t \geqslant \tau \geqslant t_{0} . \quad$ Then

$$
\begin{equation*}
\alpha_{i}\left(t, \tau, t_{0}, z_{i}, \nu\right)=\inf _{p \in L_{i}, x_{i}\left(t, t_{0}, z_{i}, p\right)=1}\left\{C_{i}(t, \tau, v, p)+\right. \tag{1.5}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\quad\left(p, \varphi_{i}(t, \tau)\right)\right\}, \quad t \geqslant \tau \geqslant t_{0}, \quad v \in V(\tau) \\
& C_{i}(t, \tau, v, p)=\max _{u_{i} \in U_{i}(\tau)}\left(-\Omega_{i}^{*}(t, \tau) p, g\left(\tau, u_{i}, v\right)\right) \\
& x_{i}\left(t, t_{0}, z_{i}, p\right)=-C_{M_{i}(t)}(p)+\left(p, \zeta_{\mathrm{i}}\left(t, t_{0}, z_{i}\right)\right) \\
& C_{M_{i_{i}}(t)}(p)=\max _{m_{i} \in M_{i}(t)}\left(p, m_{i}\right)
\end{aligned}
$$

Proof. Condition 1 is equivalent to the following inclusion:

$$
0 \in\left\{\pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, U_{i}(\tau), v\right)-\varphi_{i}(t, \tau)\right\} \forall_{v} \in V(\tau), t \geqslant \tau \geqslant t_{0}
$$

In terms of support functions it is equivalent to the inequality

$$
\begin{equation*}
c_{i}(t, \tau, v, p)+\left(p, \varphi_{i}(t, \tau)\right) \geqslant 0, \quad \forall p \in L_{i} \tag{1.6}
\end{equation*}
$$

The nonemptiness of the intersection in (1.1) is equivalent to the inequality (Theorem 1 of /3/)

$$
C_{i}(t, \tau, v, p)+\left(p, \varphi_{i}(t, \tau)\right) \geqslant \alpha_{i}{x_{i}}_{i}\left(t, t_{0}, z_{i}, p\right), \quad \forall_{p} \in L_{i}
$$

By virtue of (1.6), when $x_{i}\left(t, t_{0}, z_{i}, p\right) \leqslant 0$ the latter inequality is fulfilled for any nonnegative
a_{i-} If, however, $x_{i}\left(t, t_{0}, z_{i}, p\right)>0$, then, having set $x_{i}\left(t, t_{0}, z_{i}, p\right)=1$, we obtain $c_{i}(t, \tau, v, p)+$ $\left(p, \varphi_{i}(t, \tau)\right) \geqslant a_{i}$ for all $p \in L_{i}$, such that $x_{i}\left(t, t_{0}, z_{i}, p\right)=1$. Hence follows formula (1.5).
2. Let us consider certain sections $m_{\mathrm{i}}(t)$ of the many-valued mappings $M_{i}(t), t \geqslant t_{0}$, and let us fix them. We denote

$$
\eta_{i}\left(t, t_{0}, z_{i}\right)=\pi_{i} \Omega_{i}\left(t, t_{0}\right) z_{i}+\int_{i_{0}}^{i} \varphi_{i}(t, \tau) d \tau-m_{i}(t)
$$

Let

$$
\beta_{i}\left(t, \tau, t_{0}, z_{i}, v\right)=\left\{\begin{array}{cc}
\max \left(\beta_{i} \geqslant 0:\left\{\pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, U_{i}(\tau), v\right)-\varphi_{i}(t, \tau)\right\} \cap\right. \\
\left.\left\{-\beta_{i} \eta_{i}\left(t, t_{0}, z_{i}\right)\right\} \neq \varnothing\right\}, & \eta_{i}\left(t, t_{0}, z_{i}\right) \neq 0 \\
\left(t-t_{0}\right)^{-1}, & \eta_{i}\left(t, t_{0}, z_{i}\right)=0
\end{array}\right.
$$

We introduce the function

$$
\mu\left(t, t_{0}, z\right)=\min _{v(\cdot)} \max _{i} \int_{t_{0}}^{t} \beta_{i}\left(t, \tau, t_{0}, z_{i}, v(\tau)\right) d \tau
$$

and let $\theta\left(t_{0}, z\right)=\inf \left\{t: \mu\left(t, t_{0}, z\right)=1\right\}$.
Theorem 2. Suppose Condition 1 has been fulfilled and there exist τ-measurable functions $\varphi_{i}(t, \tau) \in \Phi_{i}(t, \tau), t \geqslant \tau \geqslant t_{0}$, and measurable sections $m_{i}(t)$ of the many-valued mappings $M_{i}(t), t \geqslant t_{0}$, such that $\Theta=\theta\left(t_{0}, z^{\circ}\right)<+\infty$, and, further, let the greatest lower bound be achieved. Then differential game (0.1) can be completed in time $\boldsymbol{\theta}-t_{0}$ from a prescribed initial position (t_{0}, z°).

Proof. Let $v(\tau) \in V(\tau), \tau \in\left[t_{0}, \boldsymbol{\theta}\right]$, be an arbitrary measurable function. We denote

$$
k\left(\Theta, t, t_{0}, z^{\circ}, v(\cdot)\right)=1-\max _{i} \int_{i_{0}}^{t} \beta_{i}\left(\Theta, \tau, t_{0}, z_{i}^{0}, v(\tau)\right) d \tau
$$

For $\tau, t \geqslant \tau \geqslant t_{0}, \quad$ such that $k\left(\theta, t, t_{0}, z^{\circ}, v(\cdot)\right)>0$ we select the controls $u_{i}(\tau) \in U_{i}(\tau)$ from the equations

$$
\pi_{i} \Omega_{i}(\theta, \tau) g_{i}\left(\tau, \quad u_{i}(\tau), v(\tau)\right)-\varphi_{i}(\Theta, \tau)=-\beta_{i}\left(t, \tau, t_{0}, z_{i}{ }^{\circ}, v(\tau)\right) \eta_{i}\left(\theta, t_{0}, z_{i}{ }^{0}\right)
$$

if $\eta_{i}\left(\Theta, t_{0}, z_{i}\right) \neq 0$ or, otherwise, from the equations

$$
\pi_{i} \Omega_{i}(\Theta, \tau) g_{i}\left(\tau, u_{i}(\tau), v(\tau)\right)-\varphi_{i}(\Theta, \tau)=0
$$

Condition 1 and the Filippov-Castaing theorem / 10 / ensure the possibility of such a selection in the class of measurable functions. Arguments analogous to the proof of Theorem 1 permit us to conclude that for some i

$$
\pi_{i} z(\Theta)=m_{i}(\Theta) \in M_{i}(\Theta)
$$

Corollary 2. Let $g_{i}\left(\tau, u_{i}, v\right)=B_{i}(\tau) u_{i}-D_{i}(\tau) v$ and let the matrices $\pi_{i} \Omega_{i}(\Theta, \tau) B_{i}(\tau)$ be nondegenerated for all $\tau \in\left[t_{0}, \theta_{]}\right]$. Then

$$
\begin{aligned}
& u_{i}(\tau)=\left[\pi_{i} \Omega_{i}(\Theta, \tau) B_{i}(\tau)\right]^{-1}\left(\pi_{i} \Omega_{i}(\Theta, \tau) D_{i}(\tau) v(\tau)+\right. \\
& \left.\quad \varphi_{i}(\Theta, \tau)-\beta_{i}\left(\Theta, \tau, t_{0}, z_{i}, v(\tau)\right) \eta_{i}\left(\Theta, t_{0}, z_{i}\right)\right], \tau \in\left[t_{0}, \Theta\right]
\end{aligned}
$$

Here $\beta_{i}\left(\theta, \tau, t_{0}, z_{i}, v(\tau)\right)=0$ for $\tau \in\left[t_{*}, \theta\right]$, where $k\left(\theta, t_{*}, t_{0} z^{0}, v(\cdot)\right)=0$.
Lemma 2. Let the mappings $g_{i}\left(\tau, U_{i}(\tau), v\right)$ be convex-valued for $\tau \geqslant t_{0}, v \in V(\tau) ; \varphi_{i}(t, \tau) \in$ $\Phi_{i}(t, \tau), t \geqslant \tau \geqslant t_{0}$, be some τ-measurable sections of the many-valued mappings $\Phi_{i}(t, \tau)$, and $m_{i}(\tau) \in M_{i}(T)$ be some measurable sections of the many-valued mappings $M_{i}(t)$. Then

$$
\beta_{\mathrm{i}}\left(t, \tau, t_{0}, z_{i}, v\right)=\inf _{p \in L_{\mathrm{i}},\left(p, \eta_{i}\left(t, t, z_{i}\right)=1\right.}\left(C_{i}(t, \tau, v, p) \div\left(p, \varphi_{i}(t, \tau)\right)\right.
$$

The proof is analogous to that of Lemma 1 .
3. Let $\omega_{i}(t, \tau), t \geqslant \tau \geqslant t_{v}$ be some τ-measurable numerical functions. We form the following mappings:

$$
\begin{aligned}
& F_{i}\left(t, \tau, u_{i}, v\right)=\pi_{i} \Omega_{i}(t, \tau) g_{i}\left(\tau, u_{i}, v\right)- \\
& \quad \omega_{i}(t, \tau) M_{i}(t), u_{i} \in U_{i}(\tau), v \in V(\tau), t \geqslant \tau \geqslant t_{0} \\
& F_{i}(t, \tau)=\prod_{i \in V(z)} F_{i}\left(t, \tau, U_{i}(\tau), v\right)
\end{aligned}
$$

Condition 2. The sets $F_{i}(t, \tau)$ are nonempty for all $t \geqslant \tau \geqslant t_{0}$. If Condition 2 is fulfilled, then the many-valued mappings $F_{i}(t, \tau)$ are measurable in τ and τ-measurable functions $f_{i}(t, \tau) \in F_{i}(t, \tau) \subset L_{i}$ exist for all $t \geqslant \tau \geqslant t_{0}$. We fix them and we set

$$
\xi_{i}\left(t, t_{0}, z_{i}\right)=\pi_{i} \Omega_{i}\left(t, t_{0}\right) z_{i}+\int_{i_{0}}^{t} f_{i}(t, \tau) d \tau
$$

(each $\left.\xi_{i}\left(t, t_{0}, z_{i}\right) \in L_{i}\right)$. We consider the functions

$$
\begin{aligned}
& \gamma_{i}\left(t, \tau, t_{0}, z_{i}, v\right)= \begin{cases}\max \left\{v_{i} \geqslant 0:\left\{F_{i}\left(t, \tau, U_{i}(\tau), v\right)-f_{i}(t, \tau)\right\} \cap\right. \\
\left.\left\{-\gamma_{i} \xi_{i}\left(t, t_{0}, z_{i}\right)\right\} \neq \varnothing\right\}, & \xi_{i}\left(t, t_{0}, z_{i}\right) \neq 0 \\
\left(t-t_{0}\right)^{-1}, & \xi_{i}\left(t, t_{0}, z_{i}\right)=0\end{cases} \\
& v\left(t, t_{0}, z\right)=\min _{v,-)}^{\max _{i} \int_{i_{0}}^{t} \gamma_{i}\left(t, \tau, t_{0}, z_{i}, v(\tau)\right) d \tau}
\end{aligned}
$$

Let $T\left(t_{0}, z\right)=\inf \left\{t: v\left(t, t_{0}, z\right)=1\right\}$.
Theorem 3. Let the following assumptions be fulfilled:
1°. There exist τ-measurable nonnegative functions $\omega_{i},(t, \tau), t \geqslant \tau \geqslant t_{0}$, exist such that Condition 2 is fulfilled.
2°. There exist τ-measurable functions $f_{i}(t, \tau) \in F_{i}(t, \tau), t \geqslant \tau \geqslant t_{0}$, such that $T=T\left(t_{0}\right.$. $\left.z^{\circ}\right)<+\infty$ and the greatest lower bound is achieved.
3°. The equality

$$
\int_{i_{1}}^{T} \omega_{i}(T, \tau) d \tau=1, \quad \forall i
$$

is fulfilled.
Then differential game (O.1) can be completed in time T - t_{0} from the prescribedinitial position $\left(t_{0}, z^{\circ}\right)$.

Proof. Let $v(\tau) \in V(\tau), \tau \in\left[t_{0}, T\right]$, be an arbitrary measurable function. we consider the function

$$
\sigma\left(T, t, t_{0}, z^{\circ}, v(\cdot)\right)=1-\max _{i} \int_{i_{0}}^{i} \gamma_{i}\left(T, \tau, t_{0}, \quad z_{i}^{\circ}, v(\tau)\right) d \tau
$$

For $\quad t, t \geqslant \tau \geqslant t_{0}, \quad$ such that $\sigma\left(T, t_{1}, i_{0}, z^{\circ}, v(\cdot)\right)>0$ we select the controls $u_{i}(\tau) \in U_{i}(\tau)$ and the functions $m_{i}{ }^{\prime}(t) \in M_{i}(t)$ from the equations

$$
\pi_{i} \Omega_{i}(T, \tau) g_{i}\left(\tau, u_{i}(\tau), v(\tau)\right)-f_{i}(T, \tau)-\omega_{i}(T, \tau) m_{i}(\tau)=-\gamma_{i}\left(T, \tau, t_{0}, z_{i}^{\circ}, v(\tau)\right) \xi_{i}\left(T, t_{0}, z_{i}^{\circ}\right)
$$

if $\xi_{i}\left(T, t_{0}, z_{i}^{o}\right) \neq 0$ or, otherwise, from the equations

$$
\pi_{i} \Omega_{i}(T, \tau) g_{i}\left(\tau, u_{i}(\tau), v(\tau)\right)-f_{i}(T, \tau)-\omega_{i}(T, \tau) m_{i}(\tau)=0
$$

Condition 2 and the Filippov-Castaing theorem / 10 / ensure the possibility of such a selection in the class of measurable functions. Using the proof plan of Theorem l, we get that $\pi_{i} z(T) \in M_{i}(T)$ for some i, which proves the theorem.

Notes. 1°. We can take $\left(t-t_{0}\right)^{-1}$ as $\omega_{i}(t, \tau)$. Then conaition 2° in the theorem is automatically fulfilled.
2°. If $M_{i}(t)=\{0\}, t=t_{0}$, then Theorems 1,2 and 3 coincide.
Corollary 3. Let $g_{i}\left(\tau, u_{i}, v\right)=B_{i}(\tau) u_{i}-D_{i}(\tau) v$, where $B_{i}(\tau), D_{i}(\mathrm{t})$ are matrices of appropriate dimensions and the matrices $\pi_{i} \Omega_{i}(T, \tau) B_{i}(\tau)$ are nondegenerated for all $\tau \in\left|t_{0}, T\right|$. Then

$$
\begin{aligned}
& u_{i}(\tau)=\left[\pi_{i} \Omega_{i}(T, \tau) B_{i}(\tau)\right]^{-1}\left[\pi_{i} \Omega_{i}(T, \tau) D_{i}(\tau) v(\tau)+\right. \\
& \left.\quad f_{i}(T, \tau)+\omega_{i}(T, \tau) m_{i}(\tau)-\gamma_{i}\left(T, \tau, t_{0}, z_{i}^{\circ}, v(\tau)\right) \xi_{i}\left(T, t_{0}, z_{i}^{o}\right)\right]
\end{aligned}
$$

Here $\gamma_{i}\left(T, \tau, t_{0}, z_{i}{ }^{\circ}, v(\tau)\right)=0$ for $\tau \in\left[t_{*}, T\right]$, where $\sigma\left(T, t_{*}, t_{0}, z^{\circ}, v(\cdot)\right)=0$.
Lenma 3. Let the mappings $g_{i}\left(\tau, U_{i}(\tau), v\right)$ be convex-valued, $\tau \geqslant t_{0}, v \in V(\tau)$. Then the formula

$$
\begin{aligned}
& \gamma_{i}\left(t, \tau, t_{0}, z_{i}, v\right)=\inf _{p \in \mathcal{L}_{i}\left(p, \xi_{i}\left(t, t_{i}, \tau_{i}\right)=1\right.}\left(C_{i}(t, \tau, v, p)+\right. \\
& \left.\quad\left(p, f_{i}(t, \tau)\right)+\omega_{i}(t, \tau) C_{M_{i}(t)}(-p)\right) \\
& t \geqslant \tau \geqslant t_{0}, v \in V(\tau), f_{i}(t, \tau) \in F_{i}(t, \tau)
\end{aligned}
$$

occurs.
The proof is by the proof plan of Lemma 1.
Note. For $m=1$ and $\}\left(T, t_{0}, z^{c}\right) \in M(T)$ the time $T=T\left(t_{0}, z^{\circ}\right)$ for ending game (0.1) coincides with the time yielded by the procedure of Pontriagin's first direct method/11/ in the nonstationary case. For $m=1$ and $\eta\left(\theta, t_{0}, z^{\circ}\right)=0$ the time $\theta=\theta\left(t_{0}, z^{\circ}\right)$ for ending game (0.1) as well coincides with the time determined by Pontriagin's first direct method $/ 11 /$.

Example. A conflict-controlled system has the form

$$
z_{i}^{\prime}=-a_{i}(t) z_{i}+u_{i}-v, \quad z_{i}\left(t_{0}\right)=x_{i}^{3}
$$

Here $z_{i} \in E^{s}, s \geqslant 1, a_{i}(t) . t \geqslant t_{0}$, are continuous nonnegative functions and $\left\|u_{i}\right\| \leqslant b_{i}(t),\|v\| \leqslant c(t), u_{i}(t)$, $c(t)$ are, for $t>t_{0}$, continuous numerical functions such that $b_{i}(t)-c(t) \geqslant 0, t \geqslant t_{0}$, while $M_{1}{ }^{\circ}$: $z_{i}=0, M_{2}(t)=\{0\}, t \geqslant t_{0}$. The matrizant is

$$
\Omega_{i}\left(t, t_{0}\right)=\exp \left(\int_{\tau_{0}}^{t} a_{i}(\tau) d \tau\right)
$$

It is seen that condition 1° is automatically fulfilled. As $\varphi_{i}(t, t)$ we take zero. Aftex computations we obtain

The pursuers' controls are

$$
u_{i}(\tau)=v(\tau)-\alpha_{i}\left(\tau_{1}, t_{0}, z_{i}{ }^{\circ}, v(\tau)\right) \Omega_{i}\left(\tau, t_{0}\right) z_{i}{ }^{0}
$$

The game ending time $\tau=T\left(t_{0}, z^{0}\right)$ is finite, for example, if
$\min _{\| t y|l|} \max _{i}\left(v, z_{i}^{c}\right)>0$

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
2. GABRIELIAN M.S. and SUBBOTIN A.I., Game problems on contact with target sets. PMM Voi.43, No. 2, 1979.
3. PSHENICHNYI B.N., Linear differential games. Avtomat. i Telemekh., No.1, 1968.
4. TARLINSKII S.I., On a linear differential game of the encounter of several controlled objects. Dokl. Akad. Nauk SSSR, Vol. 230, No. 3, 1976.
5. CHIKRII A.A., Quasilinear differential games with several players. Dokl. Akad. Nauk SSSR, Vol.246, No.6, 1979.
6. CHIKRII A.A., Quasilinear encounter problem with participation of several persons. PMm vol. 43, No. 3, 1979.
7. GRIGORENKO N.L., On a quasilinear problem of pursuit by several objects. Dokl. Akad. Nauk SSSR, Vol.249, No.5, 1979.
8. PSHENICHNYI B.N., CHIKRII A.A. and RAPPOPORT I.S., An effective method for solving differential games with many pursuers. Dokl. Akad. Nauk SSSR, Vol.256, No.3, 1981.
9. GANTMAKHER F.R., Matrix Theory. Moscow, NAUKA, 1966 (English translation, Chelsea, New York, 1959).
10. WARGA J., Optimal Control of Differential and Functional Equations. New York - London, Academic Press, Inc. 1972.
11. PONTRIAGIN L.S., Linear pursuit differential games. Matem. Sb., Vol.112, (154), No. 3(7), 1980.

[^0]: *Prikl.Matem.Mekhan.,46,No.5,730-736,1982

